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Abstract

We consider several systems of nonlinear hyperbolic conservation laws describing the dynamics of nonlinear waves in
presence of phase transition phenomena. These models admit under-compressive shock waves which are not uniquely
determined by a standard entropy criterion but must be characterized by a kinetic relation. Building on earlier work by
LeFloch and collaborators, we investigate the numerical approximation of these models by high-order finite difference
schemes, and uncover several new features of the kinetic function associated with physically motivated second and
third-order regularization terms, especially viscosity and capillarity terms.

On one hand, the role of the equivalent equation associated with a finite difference scheme is discussed. We conjecture
here and demonstrate numerically that the (numerical) kinetic function associated with a scheme approaches the (analytic)
kinetic function associated with the given model – especially since its equivalent equation approaches the regularized model
at a higher order. On the other hand, we demonstrate numerically that a kinetic function can be associated with the thin
liquid film model and the generalized Camassa–Holm model. Finally, we investigate to what extent a kinetic function can
be associated with the equations of van der Waals fluids, whose flux-function admits two inflection points.
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1. Introduction

1.1. Background

In this paper we study the numerical approximation of several first-order nonlinear hyperbolic systems
of conservation laws, and we consider discontinuous solutions generated by supplementing the hyperbolic
equations with higher-order, physically motivated, vanishing regularization terms. Specifically, we consider
complex fluid flows when physical features such as viscosity and capillarity effects cannot be neglected
even at the hyperbolic level of modeling, and need to be taken into account. This gives rise to many

shock wave theories associated with any given nonlinear hyperbolic system: depending on the underlying
small-scale physics of the problem under consideration, one need a different selection of ‘‘entropy
solutions”.

It is well known that solutions of nonlinear hyperbolic equations become discontinuous in finite time, and
may, therefore, exhibit shock waves. Classical shock waves satisfy standard entropy criteria (due to Lax, Olei-
nik, Wendroff, Liu, Dafermos, etc.); they are compressible and stable under perturbation and approximation.

On the other hand, discontinuous solutions of hyperbolic problems may also exhibit non-classical, under-

compressive shock waves – also referred to as subsonic phase boundaries in the context of phase transition the-
ory. To uniquely characterize under-compressive shocks one need to impose a jump condition that is not
implied by the given set of conservation laws and is called a kinetic relation. The selection of physically mean-
ingful shock waves of a first-order hyperbolic system is determined by traveling waves associated with an aug-
mented system that includes viscosity and capillarity effects. That is, one searches for scale-invariant solutions
depending only on the variable y :¼ x� kt for some speed k and connecting two constant states ðs�; u�Þ and
ðsþ; uþÞ at infinity. The characterization of these ‘‘admissible” discontinuities is based on kinetic relations.
(For background, see [20] and the references cited therein.)

For instance, one important model of interest in fluid dynamics describes liquid–vapor flows governed by
van der Waals’s equation of state. For pioneering mathematical works on van der Waals fluids we refer to
Slemrod et al. [29,30,13], who investigated self-similar approximations to the Riemann problem. The concept
of a kinetic relation associated with (under-compressive) non-classical shocks or phase boundaries was intro-
duced by Abeyaratne and Knowles [1,2], Truskinovsky [31,32], and first analyzed mathematically by LeFloch
[19]. Kinetic relations and non-classical shocks were later studied extensively by Shearer et al. [18,28] (phase
transition), LeFloch et al. [14–16,21,5] (traveling waves, Riemann problem, general hyperbolic systems), and
by Bertozzi, Shearer, et al. [7,6] (thin film model), as well as Colombo, Corli, Fan, and others (see [10–13] and
the references cited therein).

1.2. Approximation of under-compressive waves

The present paper built on existing numerical work done by the first author and his collaborators
[14,15,22,8,9] and devoted to the numerical investigation of non-classical shocks and phase boundaries gener-
ated by diffusive and dispersive terms kept in balance. These papers cover scalar conservation laws, and sys-
tems of two or three conservation laws arising in fluid dynamics (Euler equations) and material science.
Entropy stable schemes were constructed, and kinetic relations were computed numerically.

Numerical kinetic functions turn out to be very useful to evaluate the accuracy and efficiency of the schemes
under consideration. Numerical experiments were also performed on under-compressive shocks for the models
of thin films [6,24,25] and phase dynamics [26]. These authors did not investigate the role of the kinetic relation
for these models, and one of our aims in the present paper is to tackle this issue.

Recall that one effective numerical strategy to compute under-compressive waves is provided by the Glimm
and front tracking schemes, for which both theoretical and numerical results are now available [20,9]. Both
schemes converge to the correct non-classical solutions to any given Cauchy problem. The main feature of
these schemes is to completely avoid spurious numerical dissipation or dispersion, which this guarantees their
convergence to the physically meaningful solution selected by the kinetic relation. However, this class of
schemes has some drawbacks: they are limited to first-order accuracy and require the precise knowledge of
the Riemann solver, while numerical solutions may exhibit a noisy behavior.
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In contrast, in the last twenty years, modern, high-order accurate, finite difference techniques of (classical)
shock capturing have been developed to deal with discontinuous solutions of hyperbolic problems. Extending
these techniques to compute non-classical shocks turned out to be quite difficult, however. Our aim in the pres-
ent paper is to pursue this investigation of the interplay between dissipative and dispersive mechanisms in
hyperbolic models, and to better understand how they compare with similar mechanisms taking place in finite
difference schemes.

This problem was first tackled by Hayes and LeFloch [14,15] where the importance of the equivalent equa-
tion associated with a scheme was pointed out and kinetic functions for schemes were computed. Next, the
role of high-order, entropy conservative schemes was emphasized and further kinetic functions were deter-
mined numerically [22]. In the situation just described, the numerical solutions usually contain mild oscilla-
tions, which vanish out when the mesh is refined. This feature is entirely consistent with the behavior of
traveling wave solutions to the underlying dispersive model. In consequence, total variation diminishing
(TVD) techniques should not be used to compute non-classical shocks. Observe also that the diffusive–disper-
sive model serves only to provide a mechanism to select ‘‘admissible” solutions of associated hyperbolic equa-
tions. It has been established, for many hyperbolic models, that physically meaningful solutions can be
characterized uniquely by pointwise conditions on shocks (Rankine–Hugoniot jump conditions, an entropy
inequality, a kinetic relation, and, possibly, a nucleation criterion).

Finite difference schemes can also be studied for their own sake, and one important issue is whether criteria
can be found for a given scheme to generate non-classical shocks or not. Some heuristics were put forward in
[15] and allow one to distinguish between the following cases:

(1) Schemes satisfying (a discrete version of) all of the entropy inequalities. In the context of scalar conser-
vation laws, this is the case of the schemes with monotone numerical flux functions. For systems of two
conservation laws (which admit a large family of (convex) mathematical entropies) this class includes the
Godunov and the Lax–Friedrichs schemes (for small data, at least). These schemes, if convergent, must
converge to a weak solution satisfying all entropy inequalities which, consequently, coincides with the
classical solution selected by the Oleinik or Kruzkov entropy conditions (scalar equations) and the
Wendroff or Liu entropy conditions (systems of two or more conservation laws).

(2) Schemes satisfying a single (discrete) entropy inequality but applied to a system with genuinely nonlinear
characteristic fields. The classification of Riemann solutions given in [16] shows that, again, only the
scheme can converge to the classical entropy solution, only.

(3) Schemes satisfying a single (discrete) entropy inequality but applied to a system with non-genuinely non-
linear characteristic fields. To decide whether such schemes are expected to generate non-classical
shocks, one should determine the equivalent equation. One may truncate the equivalent equation and
keep only the first two terms. An analysis of the properties of traveling waves for this continuous model
provides an indication of the expected behavior of the scheme. Interestingly, the behavior depends on the
sign of the dispersion coefficient and the sign of the third-order derivative of the flux. For instance, for
first-order schemes applied to scalar equations one typically obtains, after further linearization in the
neighborhood of the origin 0 in the phase space,
vt � ðv3Þx ¼ hvxx þ ah2vxxx:
Non-classical shocks have been observed when the flux is concave–convex (that is, v3) and a is positive, or else
when the flux is convex–concave (that is, �v3) and the coefficient a is negative.

1.3. Purpose of this paper

We will demonstrate here that the existence of under-compressive shocks and several typical behaviors of
these nonlinear waves, especially the existence of a kinetic function, are properties shared by many examples

arising in continuum physics. To make our point, we present a number of physical models describing nonlin-
ear wave dynamics: cubic flux, thin liquid films, generalized Camassa–Holm, van der Waals fluids. Specifically,
we prove that kinetic functions can be associated to each of these models and we study their monotonicity,



P.G. LeFloch, M. Mohammadian / Journal of Computational Physics 227 (2008) 4162–4189 4165
dependence upon (viscosity, capillarity, mesh) parameters, and behavior in the large. We uncover several new
features of the kinetic function that have not been observed theoretically via analytical methods yet. It is our
hope that the conclusions reached here numerically will motivate further theoretical developments in the
mathematical theory of non-classical shocks. The work also provides further ground that not a single theory
of entropy solutions but, rather, many theories of shock waves are required to accurately describe singular lim-
its of hyperbolic equations, as supported by the framework developed in [20,21,23].

The outline of the paper is as follows. In Section 2, we present the physical models of interest and discuss
briefly their analytical properties. In Section 3, after introducing some background on non-classical shocks
and kinetic relations, we investigate the role of the equivalent equation. In Section 4, we establish the existence
of kinetic functions associated with each of the models and investigate their properties. In Section 5, we inves-
tigate van der waals fluids. Finally, Section 6 contains concluding remarks.

2. Models of interest

We begin with a brief presentation of a few nonlinear hyperbolic models arising in continuum physics.

2.1. Cubic conservation law

It will be convenient to start with an academic example consisting of a conservation law whose flux-func-
tion admits a non-degenerate inflection point. For simplicity and with little loss of generality as far as the local
behavior near the inflection point is concerned, we can assume that the flux is a cubic function. After normal-
ization, we arrive at the cubic conservation law
ut þ ðu3Þx ¼ 0; u ¼ uðt; xÞ 2 R; t P 0: ð2:1Þ
We are interested in (discontinuous) solutions that can be realized as limits of diffusive–dispersive solutions
of
ut þ ðu3Þx ¼ �uxx þ a�2uxxx; u ¼ u�aðt; xÞ; ð2:2Þ

where a is a fixed parameter and �! 0. Recall that shock waves of (2.1) are solutions containing a single prop-
agating discontinuity connecting two states u�; uþ at the speed k. These constants must satisfy the Rankine–
Hugoniot relation
k ¼
u3
þ � u3

�
uþ � u�

¼ u2
� þ u�uþ þ u2

þ;
as well as the entropy inequality associated with the quadratic entropy UðuÞ :¼ u2
�kðu2
þ � u2

�Þ þ
2

3
ðu4
þ � u4

�Þ 6 0:
As is now well-known, the solutions ua :¼ lim�!0u�a may contain both classical shock waves satisfying the stan-
dard compressibility condition (equivalent here to the entropy criteria introduced by Lax)
3u2
� ¼ f 0ðu�ÞP k P f 0ðuþÞ ¼ 3u2

þ; ð2:3Þ
as well as non-classical shock waves which turn out to be under-compressive
k < f 0ðu�Þ: ð2:4Þ

The characterization of the solutions generated by (2.2) as �! 0 is provided as follows. Based on an analysis
of all possible traveling wave solutions of (2.2), one can see that, for a given viscosity/capillarity ratio a and for
every left-hand state u�, there exists a single right-hand state
uþ ¼ u[
aðu�Þ; ð2:5Þ
that can be attained by a non-classical shock. The function u[
a is called the kinetic function associated with the

model (2.2). The existence of the kinetic function has been established theoretically for a large class of flux-
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functions and nonlinear diffusion–dispersion operators, including (2.2). The results are often stated in terms of
the shock set, Saðu�Þ, consisting of all right-hand states uþ that can be attained from a given left-hand state u�
by a classical or by a non-classical shock. Note also that instead of the relation (2.5), one can equivalently
prescribe the entropy dissipation of a non-classical shock, that is the kinetic relation can be expressed in
the following form observed in [19]:
�kðUðuþÞ � Uðu�ÞÞ þ F ðuþÞ � F ðu�Þ ¼ �
Z

R

U 00ðvðyÞÞvyðyÞ2 dy 6 0; ð2:6Þ
where y 7!vðyÞ denotes the traveling wave trajectory connecting u� to uþ. In other words, the entropy dissipa-
tion must be prescribed on a non-classical shock.

As far as the specific model with cubic flux and linear diffusion and dispersion is concerned, the kinetic
function and the shock set can be expressed explicitly by analytical formulas as follows. The kinetic function
associated with (2.2) reads
u[
aðu�Þ ¼

�u� � ~a=2; u� 6 �~a;

�u�=2; ju�j 6 ~a;

�u� þ ~a=2; u� P ~a;

8><
>: ð2:7Þ
with ~a :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8=3aÞ

p
, while the corresponding shock set is
Saðu�Þ ¼
ðu�; ~a=2� [ f�u� � ~a=2g; u� 6 �~a;

½�u�=2; u�Þ; �~a 6 u� 6 ~a;

f�u� þ ~a=2g [ ½�~a=2; u�Þ; u� P ~a:

8><
>:
Observe that u[
a converges to �u=2 when a! 0, and that the shock set converges to the standard interval

½�u=2; u� determined by the Oleinik entropy inequalities. See [20] for details.

2.2. Thin liquid films

The thin liquid film model (�; a being positive, scaling parameters)
ut þ ðu2 � u3Þx ¼ �ðu3uxÞx � a�2ðu3uxxxÞx ð2:8Þ

describes the dynamics of a thin film with height u ¼ uðt; xÞ moving on an inclined flat solid surface. The (non-
convex) flux-function
f ðuÞ ¼ u2 � u3; 0 6 u 6 1;
represents the competing effects of the gravity and a surface stress known as the Marangoni stress. The latter
arises in experiments due to an imposed thermal gradient along the solid surface. The fourth-order diffusion is
due to surface tension, and the second-order diffusion represents a contribution of the gravity to the pressure.

This model was introduced and extensively studied by Bertozzi et al. [6]. The existence of non-classical trav-
eling waves was established analytically in [7], and various numerical studies were performed [25,24] which
exhibited subtil properties of stability and instability of these waves. For more analytical background, see also
the convergence theory developed by Otto and Westdickenberg [27].

From the standpoint of the general well-posedness theory the kinetic relation is an important object
which is necessary to uniquely characterized the physically meaningful solutions. A kinetic function was
not exhibited in the work [7] which, instead, relied on non-constructive arguments. From the existing liter-
ature, it is not clear whether a concept of a kinetic relation could be associated with the equation (2.8) and,
if so, and whether such a kinetic function would enjoy the same monotonicity properties, as the ones estab-
lished earlier for conservation laws regularized by viscosity and capillarity. This issue will be addressed in
Section 4.

Observe that the flux f ðuÞ here is positive on the interval ð0; 1Þ, increasing on ð0; 2=3Þ and decreasing on
ð2=3; 1Þ. It admits a single inflection point at u ¼ 1=3. To every point u 2 ð0; 1=3Þ we can associate the ‘‘tan-
gent point” uðuÞ 2 ð1=3; 1=2Þ characterized by
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f 0ðu\ðuÞÞ ¼ f ðuÞ � f ðu\ðuÞÞ
u� u\ðuÞ ;
or
u\ðuÞ :¼ 1� u
2

:

The same formula maps also the interval ð1=3; 1Þ onto ð0; 1=3Þ. This function u\ allows us to define classical

shock waves associated with the equation. When u 2 ð0; 1=3Þ the left-hand state u can be connected to the
right-hand state u\ðuÞ by a contact discontinuity. When u 2 ð1=3; 1Þ, u\ðuÞ is the left-hand state and u is
the right-hand state.

Another important function is provided by considering the entropy dissipation
Dðu�; uþÞ :¼ � k
2
ðu2
þ � u2

�Þ þ
2

3
ðu3
þ � u3

�Þ þ
3

4
ðu4
þ � u4

�Þ:
where the shock speed k is given by
k :¼ f ðuþÞ � f ðu�Þ
uþ � u�

¼ uþ þ u� � ðu2
þ þ uþu� þ u2

�Þ:
The zero dissipation function u] is by definition the non-trivial root of D, i.e.
Dðu;u]ðuÞÞ ¼ 0;
or
u]ðuÞ :¼ 2

3
� u:
The function u] maps the interval ð0; 2=3Þ onto itself.
According to the theory in [20] the range of the non-classical shocks is limited by the functions u\ and u].

Precisely, for a non-classical shock connecting u� < 1=3 to uþ > 1=3, the right-hand state must have
u\ðu�Þ ¼
1� u�

2
6 uþ < u]ðu�Þ ¼

2

3
� u�:
The sign are reversed for a decreasing non-classical shock.

2.3. Generalized Camassa–Holm model

We consider a generalized version of the Camassa–Holm equation
ut þ f ðuÞx ¼ �uxx þ a�2ðuxxt þ 2uxuxx þ uuxxxÞ;¼ �uxx þ
a
2
�2ð2uxt þ ðu2Þxx � ðuxÞ2Þx; ð2:9Þ
which arises as an asymptotic higher-order model of wave dynamics in shallow water. The second-order and
third-order terms are related to the viscosity and the capillarity of the fluid. When the flux f is non-convex, for
instance
f ðuÞ ¼ u3
non-classical shocks may in principle arise. We will demonstrate in this paper that indeed solutions may ex-
hibit non-classical shocks and establish the existence of an associated kinetic function.

2.4. van der Waals fluids

Compressible fluids are governed by the following two conservation laws:
ots� oxu ¼ 0;

otuþ oxpðsÞ ¼ �oxxu� a�2oxxxs:
ð2:10Þ
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Here, u and s represent the velocity and the specific volume of the fluid, respectively, while a is a non-negative
parameter representing the strength of the viscosity. The pressure law p ¼ pðsÞ is a positive function defined
for all s 2 ð0;þ1Þ and of the following van der Waals type: there exist 0 < a < c such that
p00ðsÞ > 0; s 2 ð0; aÞ [ ðc;þ1Þ;
p00ðsÞ < 0; s 2 ða; cÞ;
p0ðaÞ > 0; ð2:11Þ
and
lim
s!0

pðsÞ ¼ þ1; lim
s!þ1

pðsÞ ¼ 0: ð2:12Þ
The left-hand side of (2.10) forms a first-order system of partial differential equations, which is of elliptic type
when s belongs in the interval ðd; eÞ characterized by the conditions 0 < d < a < e < c and p0ðdÞ ¼ p0ðeÞ ¼ 0.
It is of hyperbolic type when s 2 ð0; dÞ [ ðe;þ1Þ and admits the two (distinct, real) wave speeds �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�p0ðsÞ

p
.

3. A conjecture on the equivalent equation

3.1. Kinetic functions associated with difference schemes

We now begin the discussion of the numerical approximation of the solution ua generated by (2.2). The dis-
cussion applies to general conservation laws of the form
otuþ oxf ðuÞ ¼ 0;
where the flux-function f admits a single inflection point. To any finite difference scheme associated with (2.1)
one can in principle associate a kinetic function, which we denote by w[

a. It may seem natural to request that w[
a

coincides with the kinetic function u[
a associated with the given model. However, it has been observed by

Hayes and LeFloch [15] that, at least for all finite difference schemes that have been considered so far,
w[
a 6¼ u[

a: ð3:1Þ

This discrepancy is due to the fact that the dynamics of non-classical shocks is determined by small-scale fea-
tures of the continuous model (2.2) which can never be fully mimicked by a discrete model.

Given this perspective, the next natural question is to compare the kinetic functions w[
a and u[

a. We require
that a scheme be a good approximation of the given, continuous model in the following sense. Its equivalent
equation obtained by formal Taylor expansion should have the ‘‘correct” form
vt þ ðv3Þx ¼ �vxx þ a�2uxxx þOðhqÞ; h ¼ c�; ð3:2Þ
where c is a constant and q represent the order of accuracy of the scheme. Here, v denotes the numerical solu-
tion and h denotes the discretization parameter. It is important to observe that all of the schemes considered in
the present paper are first-order accurate, only, as far as the hyperbolic equation (2.1) is concerned. They are,
however, high-order approximations of the augmented model (2.2). For clarity, we emphasize the dependence
in q and denote by w[;q

a the kinetic function associated with a scheme whose equivalent equation is (3.2).
Let us introduce in this paper the following:

Conjecture 3.1. As q!1 the kinetic function w[;q
a associated with a scheme with equivalent equation (2.7)

converges to the exact kinetic function u[
a,
lim
q!1

w[;q
a ¼ u[

a: ð3:3Þ
Rigorous results pointing toward the validity of this conjecture can be found in [4] which studies the role of
relaxation terms in traveling wave solutions of conservation laws. A closely related problem was tackled by
Hou and LeFloch [17] who considered non-conservative schemes for the computation of nonlinear hyperbolic
problems. In these problems, small-scale features are critical in selecting shock waves, and the equivalent equa-
tion have been found to provide a guide to designing difference schemes. We will not try here to support the
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above conjecture on theoretical grounds, but we propose to investigate it numerically. As we will see, very
careful experiments are necessary.

We consider a large class of schemes based on standard differences, and obtained by approximating the spa-
tial derivatives arising in (2.2) – with � replaced by the mesh size h (up to a constant multiplicative factor)
f ðuÞx; huxx; h2uxxx;
by high-order finite differences, so that the overall scheme is of order q at least. For completeness we list below
the corresponding expressions. We denote by xi the points of spacial mesh and by ui the approximation of the
solution at the point xi. We also use the notation fi :¼ f ðuiÞ.

Based on the above we arrive at semi-discrete schemes for the functions ui ¼ uiðtÞ. For instance, using
fourth-order discretizations above we obtain
dui

dt
¼ � 1

h
1

12
fi�2 �

2

3
fi�1 þ

2

3
fiþ1 �

1

12
fiþ2

� �
þ �

h
� 1

12
ui�2 þ

4

3
ui�1 �

5

2
ui þ

4

3
uiþ1 �

1

12
uiþ2

� �

þ a�2

h
� 1

2
ui�2 þ ui�1 � uiþ1 þ

1

2
uiþ2

� �
: ð3:4Þ
Observe that this is a fully conservative scheme, in the sense that
P

iuiðtÞ is independent of t (assuming, for
instance, periodic boundary conditions).

To actually implement the above algorithm, we use a Runge–Kutta scheme. Defining UðtÞ ¼ ðuiðtÞÞ (with
i ¼ . . . ;�1; 0; 1; . . .), the semi discrete scheme takes the form
dU
dt
ðtÞ ¼ R½UðtÞ�; ð3:5Þ
where R½UðtÞ� represents the spatial discretization. This system of ordinary differential equations is solved
numerically by employing an s-stage Runge–Kutta scheme defined as follows:
gk ¼ R U n þ Dt
Pk�1

j¼1

ak;jgj

 !
;

U nþ1 :¼ U n þ Dt
Ps

k¼1

bkgk:

ð3:6Þ
For example, the non-zero coefficients of the fourth-order Runge–Kutta scheme are given by
a2;1 ¼ 1=2; a3;2 ¼ 1=2; a4;3 ¼ 1;

b1 ¼ 1=6; b2 ¼ 1=3; b3 ¼ 1=3; b4 ¼ 1=6:
ð3:7Þ
Coefficients of a sixth and an eighth-order Runge–Kutta scheme are found in [33,34], respectively.

3.2. Numerical experiments

We now determine numerically the kinetic function associated with the schemes described in the previous
section. For each q ¼ 4; 6; 8; 10 and for selected values of the parameter a we compute the function w[;q

a . For
the cubic flux function, two typical types of non-classical waves arise, which are under-compressive shock fol-
lowed by a rarefaction wave (Fig. 1, left), and a double shock structure (Fig. 1, right). In order to plot a single
kinetic function it is necessary to solve a large number of Riemann problems for various values of left-hand
state u� and to ensure that the right-hand state is picked up in an interval where a non-classical shock does
exist. In the numerical experiments it is often convenient to select the right-hand state so that the Riemann
solution contain two shocks. According to the construction algorithm in [21] the middle state between the
two shocks is therefore the kinetic value uþ ¼ w[;q

a ðu�Þ.
Several difficulties arise. First, when u� is close to the origin all the waves become very weak and it is

numerically difficult to identify the middle state. Second, in a range of parameter values, the two waves
may propagate with speeds that are very close and this again makes difficult the computation of the middle
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Fig. 1. Typical cases of non-classical waves for the cubic flux function.
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state. Finally, solutions do contain mild oscillations, especially for small values of a and this again introduces
some numerical error. Due to these constraints we need to use a rather fine mesh, with h of the order of
1=1000.

The following plots allow us to investigate numerically the convergence of the kinetic function w[;q
a toward

the exact kinetic function, (2.7), which is a piecewise affine function of the variable u�.
In the following numerical tests, the CFL number was taken to be as large as possible in each run and was

identical for all schemes (fourth-order to tenth-order). It was observed that increasing the order of Runge–
Kutta scheme (in the temporal integration) from four to six and eighth practically does not change the results,
therefore, a tenth-order Runge–Kutta scheme was not examined. On the other hand, the order of spatial dis-
cretization was found to be very important and effectively made an important difference.

First of all, Fig. 2 shows the right-hand state uþ versus the parameter a for different schemes. Here, we have
used h ¼ 0:001; u� ¼ 10, and � ¼ 5h. As a increases, the results of different order numerical schemes become
closer and closer to the exact solution. For large values of a, e.g. a > 10, even the fourth-order scheme gives
satisfactory results. Since the solution of (2.1) is, in fact, the limit of diffusive–dispersive solutions of (2.2), with
a fixed and �! 0, we conclude that (provided a is sufficiently large) even the fourth-order scheme converges to
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Fig. 2. uþ versus a for different schemes.
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the exact solution. Fig. 2 shows also that, for a fixed value of a (sufficiently large), as the order of accuracy
increases, the numerical solution converges to the exact one. These results strongly support Conjecture 3.1.

Next, Fig. 3 (left) shows uþ versus u� for a=1, 4 and 6 respectively, with h ¼ 0:005, and � ¼ 5h. A grid of
2000 nodes was used in all runs. Again, by increasing the order of accuracy, the numerical solution converges
to the exact one, for sufficiently small left-hand state u�. However, the suitable value of a depends on u� and
increases as a does. It should be mentioned that very high values of a (which are in need for large u�), are not
satisfactory since they lead to high oscillatory results (recall that a is dispersion–diffusion ratio). It was also
observed that for small values of a, high frequency oscillations occur before the non-classical shock, while
for large values of a, low frequency oscillations take place after the rarefaction (not shown).

Finally, Fig. 3 (right) shows the scaled entropy dissipation /ðsÞ=s2 versus the shock speed s for a ¼ 1; 4; 6,
respectively. We use the quadratic entropy UðuÞ ¼ u2=2 in computing the entropy dissipation. In terms of u�
and uþ, this is
/ðu�; uþÞ ¼ ðuþ � u�Þ2ðu2
þ � u2

�Þ; ð3:8Þ
and from the Runkine–Hugoniot relation, the shock speed is
s ¼ u2
� þ u�uþ þ u2

þ: ð3:9Þ
The same feature is observed as before and by increasing the order of accuracy; the numerical entropy dissi-
pation converges to the exact one (provided a is sufficiently large), which is in accordance with Conjecture 3.1.

3.3. Spatial discretization parameter versus diffusive–dispersive parameters

To conclude this section let us set h ¼ c� and plot the corresponding numerical results with the sixth-order
scheme and some fixed values of h and �. It was observed that when c is either too small or too large, the
numerical results deteriorate and an approximate kinetic function can no longer be associated with the numer-
ical approximations.

As shown in Fig. 4 for typical values u� ¼ 10, a ¼ 1 and CFL = 0.5, the specific choice of c does not change
the general feature of the results. However, as we increase the value of c, all schemes converge to the exact
solution and the tenth-order scheme converges faster. Moreover, it is concluded from Fig. 4 that the sixth-
order scheme with c ¼ 10 is a reasonable choice in terms of accuracy and computational efficiency. For this
value of c (that is, � ¼ 10h) with h ¼ 0:005, Fig. 5 shows the kinetic function uþ versus u� (left) and the cor-
responding scaled entropy dissipation /ðsÞ=s2 versus the shock speed s for a ¼ 1; 4; 6 (right) which are in
accordance with the previous results about the convergence of the numerical results to the exact one.
Fig. 4. uþ versus c for different schemes.
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4. Fourth-order models

We now return to the examples of Section 2 and discuss the thin film and Camassa–Holm models. We will
show that solutions of the Riemann problem may admit under-compressive shocks, and we will determine the
corresponding kinetic function in a significant range of data. Our results in the previous section indicate that
we can continue this investigation with sixth-order schemes, which we will do in (most of) the forthcoming
tests.

4.1. Thin liquid films

Consider the model of thin liquid films together with the physical regularization terms. Our goal is to
(numerically) compute a kinetic function associated with this model. It should be reminded that the physically
relevant range for the solutions is the interval ð0; 1Þ. This model has a flux with a single inflection point, as is
the case with the cubic conservation laws, and the interesting aspect is the particular form of the regulariza-
tion. In view of experiments performed in [7], it may be anticipated that a unique Riemann solver cannot be
associated to a given set of initial data, and that the specific initialization adopted in implementing a given
scheme may play a role. We will first show that a kinetic relation can be associated to a family of initial data
and a given approximation of these initial data.

Since the flux has a convex–concave shape rather than a concave–convex form (contrary to the cubic flux
function), the non-classical shock is fast under-compressive and it is more convenient to draw the kinetic func-
tions from right to left, that is,
u� ¼ uðuþÞ:

The calculations here are more delicate than those performed with the third-order regularization, since we are
now dealing with a fourth-order regularization. Therefore, for the discretization of the terms arising in (2.8), a
scheme must be fifth-order in accuracy at least. We thus exclude the fourth-order scheme used earlier and we
concentrate attention on the sixth-order scheme.

It should be mentioned that the (fourth-order) regularization is singular at u ¼ 0, so tests involving values
close to u ¼ 0 are challenging and the kinetic function should have some degenerate behavior as some values
in the solution approaches u ¼ 0.

The thin film model (2.8) may be written in the conservative form
ut þ gðuÞx ¼ 0; ð4:1Þ
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with
gðuÞ :¼ u2 � u3 � u3ðdux � uxxxÞ; ð4:2Þ

where we have set � ¼ d and a�2 ¼ 1.

The numerical solution of (4.1) is obtained by calculating the terms ux and uxxx in (4.2) using the sixth-order
scheme (Appendix A), computing the nodal values of g, and finally calculating gx again using the sixth-order
scheme (Appendix A). The numerical experiments are performed here with d ¼ 0:1h and h ¼ 1 using a com-
putational grid of 1000 nodes and the initial condition used in [7]
uðxÞ ¼ ðtanhð�xþ 100Þ þ 1Þ ðuL � uRÞ
2

þ uR: ð4:3Þ
The numerical solutions of (4.1) for uR ¼ 0:1 and uL ¼ 0:5 and 0:6 with Dt ¼ 0:6481 at time t ¼ 1037 are
shown in Fig. 6. For the case uL ¼ 0:5 a double shock structure is observed while for uL ¼ 0:6 a rarefaction
wave and an under-compressive shock are generated. The speed of the non-classical shock is similar for the
two cases, as expected.
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In agreement with what was observed (and proven rigorously in [5]) for the diffusive–dispersive regulariza-
tions, when 0:2 < uR < 0:4, i.e. around the inflection point u ¼ 1=3, only classical waves are observed as
shown e.g. in Fig. 7 for uR ¼ 0:3 and different values of uL (with Dt ¼ 0:388 at time t ¼ 698). For 0:4 < uR

non-classical waves arise even when uL is small and become clearly visible as uR increases as shown in Fig. 8.
Fig. 9 shows the numerical solutions obtained for Dt ¼ 0:37, at time t ¼ 2148 for uR ¼ 0:6 and two cases

uL ¼ 0:1 and uL ¼ 0:2. For the case uL ¼ 0:2 a double shock structure is observed while for uL ¼ 0:1 a rare-
faction wave and an under-compressive shock are generated. It should be mentioned that when uL is selected
large enough, only classical waves are observed as shown for uL ¼ 0:5 and 0:68 (with the same data) in Fig. 10.

Varying the left-hand and right-hand initial states and keeping fixed all other parameters, for d ¼ gh with
g ¼ 0.1 we obtain the numerical kinetic function (u� as a function of uR) shown in Fig. 11 (left). Interestingly
enough, this function is decreasing, as required in the general theory of non-classical shocks. It is also observed
that the numerical kinetic functions converge as the order of the accuracy of the numerical scheme is
increased. Note that, for sufficiently large right-hand values of uR, negative left-hand values u� are obtained
which are physically irrelevant. The scaled entropy dissipation /ðsÞ=s2 versus the shock speed s is also shown
in Fig. 11 (right).
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Finally, we study the effect of g ¼ d=h for ur ¼ 0:8. Fig. 12 presents a sample of the solution with various
schemes for g ¼ 4:7. In Fig. 13, it is shown that by increasing g, the numerical results converge to the limiting
value with the tenth-order scheme. The optimum value of g depends on ur and it is increased as ur does (not
shown). In Fig. 14 we have plotted the kinetic functions for various schemes where a variable (optimum) g
(depending on ur) is employed. The convergence predicted in Conjecture 3.1 is clearly confirmed here.

In order to investigate the effect of the initial conditions, we consider the following initial condition
uðxÞ ¼
ð0:35� uLÞ tanhðx� 80Þ=2þ ð0:35þ uLÞ=2; x 6 105;

ðuR � 0:35Þ tanhðx� 130Þ=2þ ð0:35þ uRÞ=2; x > 105:

�
ð4:4Þ
The numerical solutions of (4.1) for uR ¼ 0:7 and uL ¼ 0:05 with Dt ¼ 0:27 and Dx ¼ 1 at time t ¼ 18792 are
shown in Fig. 15. As shown in Fig. 15, the two choices of numerical solutions lead to different results. How-
ever, such a dependence on the initial data is only limited to few cases.
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4.2. Generalized Camassa–Holm model

It is expected that the kinetic function of the Camassa–Holm model is qualitatively similar to that of the
diffusive–dispersive model. However, some differences, at least quantitatively are expected. In the following,
we draw a kinetic function for the Camassa–Holm model and compare with the diffusive–dispersive model
with the same coefficients. First, we investigate the behavior of the function for large values of u.

Fig. 16 shows the results obtained with h ¼ 1, � ¼ 0:005h, a ¼ 1 and CFL = 0.5 using a computational grid
of 1000 nodes. The kinetic function for the Camassa–Holm model (Fig. 16, right) is larger than the linear dif-
fusion–dispersion case (Fig. 16, left).

The comparison between the Camassa–Holm model and the linear diffusion–dispersion model allows to see
that the kinetic function of the two models is similar for small values of u but different for large values of u.
Typically, for large values of u, the Camassa–Holm model leads to larger kinetic values. This behavior is due
to the nonlinearity of the regularization in the right-hand side of (2.9). It would be interesting (and challeng-
ing) to apply the techniques in [5] and prove the existence and monotonicity of the kinetic function associated
with the Camassa–Holm model.
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We then consider small values of u. Fig. 17 shows the results obtained for both models with
h ¼ 1; � ¼ 0:1h; a ¼ 4 and CFL = 0.5 using a computational grid of 1000 nodes. Contrary to the case of large
values of u, the behavior of the function for small values of u is the same for both models.

5. Kinetic functions associated with van der Waals fluids

Our next objective is to investigate the properties of non-classical solutions to hyperbolic conservation laws
whose flux-function admits two inflection points. We consider the phase transition model (2.10) presented in
Section 2. As we will see, the dynamics of non-classical shock waves for general flux is much more intricate
than the now well-understood case of a single inflection point. In particular, we demonstrate numerically that
the Riemann problem may well admit arbitrarily large number of solutions. This happens only when the flux
admits two inflection points at least and provided the dispersion parameter is sufficiently large. We then deter-
mine the kinetic function and observe its lack of monotonicity.
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We consider an equation of state having the same shape as that of van der Waals fluids, described by the
(normalized) equation
pðsÞ :¼ 1

ð3s� 1Þ1þ1=f
� 3

s2
; u > 1=3; ð5:1Þ
for some positive constant f ¼ 1=ðc� 1Þ where c 2 ð1; 2Þ.To exhibit the dynamics of non-classical shocks for
general flux, we solve the Riemann problem for left- and right-data:

(i) First, we determine the wave structure of the solution for each fixed left-hand state, that is, we identify
the waves (classical/non-classical shock or rarefaction) within the Riemann solution. In turn, by varying
the left-hand state, we identify regions in the plane in which the structure of the Riemann solution
remain unchanged as we change the Riemann data. This provides us with a representation of the Rie-
mann solver in the plane.

(ii) Second, within the range of ul where non-classical shocks leaving from ul are available, we determine the
corresponding kinetic functions that are needed to characterize the dynamics of non-classical shocks. It



τ

p

1 2 3

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 18. Equation of state considered in (5.3).

x

u

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x

τ

0.2 0.3 0.4 0.5 0.6 0.7

1

1.5

2

2.5

3

3.5

Fig. 19. Typical wave structure for van der Waals fluids; left u and right s, for uR ¼ 0:5.

4180 P.G. LeFloch, M. Mohammadian / Journal of Computational Physics 227 (2008) 4162–4189
is expected that more than one kinetic function will be needed in some range of ul, but a single kinetic
function maybe sufficient in certain intervals.

To begin with, we consider a simplified case
ots� oxu ¼ 0;

otuþ oxpðsÞ ¼ �oxxu;
ð5:2Þ
with
pðsÞ :¼ RT
ðs� 1

3
Þ �

3

s2
; ð5:3Þ
and R ¼ 8
3

and T ¼ 1:005. This flux function has two inflection points at s ¼ 1:00996 and 1.8515 and it is
shown in Fig. 18.

In order to investigate possible wave cases, various test cases are performed by keeping three of four vari-
ables (uL, sL, sR and uR) constant and changing the fourth one. Some typical wave structures for uL ¼ 0:35,
sL ¼ 0:8, sR ¼ 2 and uR ¼ 0:5; 1:5 and 2 are shown in Figs. 19–21.
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Next, we select uR ¼ 1, sL ¼ 0:8, sR ¼ 2 and uL variable from 0 to 2. Note that the two inflection points are
between the selected sL and sR. We study the kinetic function for this case. Numerical results are obtained
using a computational grid of 2000 nodes and h ¼ 0:0005 with � ¼ 0:00003. The wave structures for this case
are given in Figs. 22 and 23 (corresponding to the case uR ¼ 1).

The kinetic function obtained for uR ¼ 1 is shown in Fig. 24, which shows the relation between right and
left states of the non-classical shock for s. Note that the kinetic functions are obtained only for uL < 1:2, where
clear non-classical shocks are generated. It is observed that for large u�, all schemes give close results, while for
small u�, the results largely depend on order of accuracy of the numerical scheme. Again, as the order of accu-
racy increases, the numerical solutions appear to converge, which supports Conjecture 3.1. The kinetic func-
tion in this case is monotonic and strictly decreasing.

In order to check whether the kinetic function is single-valued, we now consider uR ¼ 1:5. The kinetic func-
tion obtained in this case for s is shown in Figs. 25. As it is observed, the results are similar to those of kinetic
function in Fig. 24. Similarly, the cases with uR ¼ 0, uR ¼ 3 and uR ¼ 5 were also tested, and they led to the
same kinetic function. This shows that the kinetic function is single-valued here, at least for the cases consid-
ered above.
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Fig. 22. Wave structure (s), corresponding to the case sL ¼ 0:8, sR ¼ 2, uR ¼ 1 and variable uL.
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Next, we add the capillarity effects in (5.2)
ots� oxu ¼ 0;

otuþ oxpðsÞ ¼ �oxðoxuÞ � a�2oxxxs:
ð5:4Þ
We repeat the experiments with the same data (i.e. uR ¼ 1, sL ¼ 0:8, sR ¼ 2 and varying uL), but now including
capillarity effect with a ¼ 1. The capillarity coefficient is a�2 as in the previous cases. The kinetic functions for
various schemes are shown in Fig. 26, (which shows the relation between right and left states of the non-clas-
sical shock for s), and they are compared with the case of no capillarity effect. As it is observed, for a given s�,
the capillarity effect leads to smaller values of sþ.

5.1. A piecewise linear pressure function

In order to highlight the effect of a pressure function with two inflection points, here we use a piecewise
linear flux function which was already studied in [3], given by
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Fig. 24. The kinetic function for s obtained for uR ¼ 1.
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Fig. 25. The kinetic function for s obtained for uR ¼ 1:5.
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pðsÞ ¼

�7sþ 10; s 6 1;

4s� 1; 1 < s 6 2;

� 5
2
sþ 12; 2 < s 6 4;

� 1
5
sþ 4

15
; 4 < s;

8>>><
>>>:

ð5:5Þ
and shown in Fig. 27. In order to explore various regimes occurring by this pressure function, we set sL ¼ 0:9
and sR ¼ 4. The two inflection points are again between the selected sL and sR.

Note that, since the pressure function is piecewise linear, s in the system (5.4) does not depend on the spe-
cific choice of uL and uR, but depends only on their difference uL � uR. This is easily checked by a change of
variable u 7!uþ c, where c is any constant. Hence, in the numerical experiments without loss of generality, we
can fix uR ¼ 1, and change uL only.

Numerical results are obtained using a computational grid of 2000 nodes and h ¼ 0:0005 with � ¼ 0:001
and a ¼ 0 (no capillarity effects).
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Three regimes are identified, as explained now:

– Regime A: 1:4 6 uL and a stationary shockIn this regime, a stationary shock wave is generated in the center.
A typical solution is plotted in Fig. 28 for uL ¼ 1:5. The kinetic function in this regime based on the fourth-
order scheme is shown in Fig. 29, and it appears to be a linear function.

– Regime B: �1:2 < uL 6 1:4 and a non-stationary shockIn this regime, a (left-going) non-classical shock wave
is generated. A typical picture of this regime is shown in Fig. 30 for uL ¼ 1. As uL decreases, the shock speed
is increased, and the left-hand and right-hand values of the non-classical shock reach some limiting values.
The kinetic function in this regime is non-monotone and not single-valued Fig. 31.

– Regime C: uL 6 �1:2 and a non-stationary shock with fixed left- and right-hand valuesIn this regime, a (left-
going) non-classical shock wave is generated, but the values s� and sþ are fixed to the limiting values of
Regime B awhile the specific volume s is increased on the right-hand side of the non-classical shock and
generates a right-moving wave. A typical solution for this regime is plotted in Fig. 32 for uL ¼ �2. No
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kinetic function arises in this regime since s� and sþ do not change. Finally, kinetic functions for both
Regimes A and B are given in Fig. 33, using fourth- and eighth-order schemes. Note that the kinetic func-
tions are almost identical in the Regime A (stationary shock) for both schemes, but they are largely distinct
in the Regime B.

6. Concluding remarks

The specific contributions made in this paper are threefold.

– First, we have investigated the role of the equivalent equation associated with a scheme. We stated a conjec-
ture and provided numerical evidences demonstrating its validity. We have shown that the kinetic function
associated with a finite difference scheme approaches the (exact) kinetic function derived from a given (viscos-
ity, capillarity) regularization. Interestingly, the accuracy improves as its equivalent equation coincides with
the diffusive–dispersive model at a higher and higher order of approximation. We observed that the spatial
accuracy plays a more crucial role than the temporal accuracy. In both the continuous model and the discrete
scheme, small scale features are critical to the selection of shocks. Hence, the balance between diffusive and
dispersive features determines which shocks are selected. These small scale features cannot be quite the same
at the continuous and at the discrete levels, since a continuous dynamical system of ordinary differential equa-
tions cannot be exactly represented by a discrete dynamical system of finite difference equations. The effects of
the regularization coefficients on the kinetic functions were also investigated.

– Second, we considered fourth-order models. We demonstrated that a kinetic function can be associated
with the thin liquid film model. We also investigated a generalized Camassa–Holm model, and discovered
non-classical shocks for which we could determine a kinetic relation. In both models, the kinetic function
was found to be monotone decreasing, as required in the general theory [20].

– Third, we investigated to what extent a kinetic function can be associated with van der Waals fluids, whose
flux-function admits two inflection points. We established that the Riemann problem admits several solutions
whose discontinuities have viscous-capillary profiles, and we exhibited non-monotone kinetic functions.

In summary, the new features of the kinetic functions observed here suggests directions for further challeng-
ing theoretical work on the well-posedness theory for the Cauchy problem associated with nonlinear hyper-
bolic problems.
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Appendix A. For completeness we list here the high-order discretizations used in this paper which, for
instance, we state for a conservation law with conservative variable u and flux f ¼ f ðuÞ.

– Fourth-order discretization (q ¼ 4):
hfx ¼
1

12
fi�2 �

2

3
fi�1 þ

2

3
fiþ1 �

1

12
fiþ2;

h2uxx ¼ �
1

12
ui�2 þ

4

3
ui�1 �

5

2
ui þ

4

3
uiþ1 �

1

12
uiþ2;

h3uxxx ¼ �
1

2
ui�2 þ ui�1 � uiþ1 þ

1

2
uiþ2:
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– Sixth-order discretization (q ¼ 6):
hfx ¼ �
1

60
fi�3 þ

3

20
fi�2 �

3

4
fi�1 þ

3

4
fiþ1 �

3

20
fiþ2 þ

1

60
fiþ3;

h2

2
uxx ¼
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180
ui�3 �

3

40
ui�2 þ

3

4
ui�1 �

49

36
ui þ

3

4
uiþ1 �

3

40
uiþ2 þ

1

180
uiþ3;

h3

6
uxxx ¼

1

48
ui�3 �

1

6
ui�2 þ

13

48
ui�1 �

13

48
uiþ1 þ

1

6
uiþ2 �

1

48
uiþ3:
– Eighth-order discretization (q ¼ 8):
fx ¼
1

280
fi�4 �

4
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fi�3 þ

1

5
fi�2 �

4

5
fi�1 þ

4

5
fiþ1 �

1

5
fiþ2 þ

4

105
fiþ3 �

1
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fiþ4;

h2

2
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4
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ui�3 �

1
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ui�2 þ
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5
ui�1 �
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4

5
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1
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– Tenth-order discretization (q ¼ 10):
hfx ¼
�1

1260
fi�5 þ

5

504
fi�4 �

5

84
fi�3 þ

5

21
fi�2 �

5

6
fi�1 þ

5
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5
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5

504
fiþ4 þ

1
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5
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5
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5
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� 5
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1
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6
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ui�4 þ
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ui�3 �
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4320
ui�1 �

1669
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[21] P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems, J. Hyperbolic Differ. Equ. 1 (2004) 643–690.
[22] P.G. LeFloch, C. Rohde, High-order schemes, entropy inequalities, and non-classical shocks, SIAM J. Numer. Anal. 37 (2000) 2023–

2060.
[23] P.G. LeFloch, M. Shearer, Nonclassical Riemann solvers with nucleation, Proc. Roy. Soc. Edinb. A 134 (2004) 941–964.
[24] R. Levy, M. Shearer, Comparison of dynamic contact line models for driven thin liquid films, Eur. J. Appl. Math. 15 (2004) 625–642.
[25] A. Münch, Shock transitions in Marangoni gravity driven thin film flow, Nonlinearity 13 (2000) 731–746.
[26] S.-C. Ngan, L. Truskinovsky, Thermo-elastic aspects of dynamic nucleation, J. Mech. Phys. Solids 50 (2002) 1193–1229.
[27] F. Otto, M. Westdickenberg, Convergence of thin film approximation for a scalar conservation law, J. Hyperbolic Differ. Equ. 2

(2005) 183–200.
[28] S. Schulze, M. Shearer, Undercompressive shocks for a system of hyperbolic conservation laws with cubic nonlinearity, J. Math.

Anal. Appl. 229 (1999) 344–362.
[29] M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal. 81 (1983)

301–315.
[30] M. Slemrod, A limiting viscosity approach to the Riemann problem for materials exhibiting change of phase, Arch. Ration. Mech.

Anal. 105 (1989) 327–365.
[31] L. Truskinovsky, Dynamics of non-equilibrium phase boundaries in a heat conducting nonlinear elastic medium, J. Appl. Math.

Mech. (PMM) 51 (1987) 777–784.
[32] L. Truskinovsky, Kinks versus shocks, in: R. Fosdick, E. Dunn, M. Slemrod (Eds.), Shock Induced Transitions and Phase Structures

in General Media, IMA Vol. Math. Appl., vol. 52, Springer-Verlag, New York, 1993, pp. 185–229.
[33] C. Tsitouras, S.N. Papakostas, Cheap error estimation for Runge–Kutta methods, SIAM J. Sci. Comput. 20 (1999) 2067–2088.
[34] C. Tsitouras, Optimized explicit Runge–Kutta pair of order 9, Appl. Numer. Math. 38 (2001) 123–134.


	Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models
	Introduction
	Background
	Approximation of under-compressive waves
	Purpose of this paper

	Models of interest
	Cubic conservation law
	Thin liquid films
	Generalized Camassa-Holm model
	van der Waals fluids

	A conjecture on the equivalent equation
	Kinetic functions associated with difference schemes
	Numerical experiments
	Spatial discretization parameter versus diffusive-dispersive parameters

	Fourth-order models
	Thin liquid films
	Generalized Camassa-Holm model

	Kinetic functions associated with van der Waals fluids
	A piecewise linear pressure function

	Concluding remarks
	Acknowledgments
	Appendix A
	References


